
Remote Programming Interface 
(RPI) for the Agilent Technologies 
16700 Logic Analysis System
Programmer’s Guide
© Copyright Agilent Technologies Inc. 1999-2000
All Rights Reserved

Version 10-23-00



ou 
 

 
er.

 in 

ss 
In This Book

This book is a programmer’s guide for the Remote Programming Interface 
(RPI) for the Agilent 16700 logic analysis system. Its purpose is to give y
the neccessary information to remotely control the logic analysis system
through the execution of remote programs. 

In addition to this book, you should have a general knowledge of 
programming in the Basic or C programming language. You should also
have a basic understanding of making measurement with a logic analyz

The RPI is available in two forms. While only the ASCII RPI is explained
this book, information is available on the ActiveX/COM RPI when you 
upload the Agilent BenchLink XL 16700 software components and acce
the Excel Add-in Toolbar help system.

In Chapter 1, you will find information on the setup of the logic analysis 
system and your remote compute.

Chapter 2 is a command reference for the sytem level commands.

Chapter 3 is a command reference for all the hardware modules.

Chapter 4 is a command reference for all the software tools.
2   



Contents
1 Setup and Configuration

Remote Programming Interface (RPI) Overview 6
RPI Architecture 7
RPI for Unix 7
Use Model 7

Create a Configuration File 7
Load-Run-Store 8

System Setup 8
Learning and Debugging RPI Programs 8

Exercise: 9
For More Information 9

Data Transfers 9
Sample Programs 9
Remote Programming Interface (RPI) General Characteristics 10

Agilent Benchlink XL ActiveX Automation Server 10
Procedural User Application 10

Programming Conventions 11

2 System Commands

clear 14

config 15

ctl_port 16

lock, unlock 17

modules 18

start 20

status 22

stop 24
 3



Contents
tools 25

version 26

wait 27

3 Hardware Module Commands

analyzer 30

scope 37

pattgen 43

emulator 45

4 Software Tool Commands

listing 48

compare 50

fileout 53

Index 55
4  



1

Setup and Configuration

In the following chapter you will find information on setting up your remote 
computer and using the RPI procedural commands to remotely control the 
logic analysis system.
5



Setup and Configuration
Remote Programming Interface RPI Overview

The Agilent Remote Programming Interface (RPI) allows you to create 
custom programs to control your Agilent 16600 or 16700 series logic 
analyzer.  RPI is optimized for use in conjunction with Microsoft Win95/98/
NT platforms or Unix platforms.  

On the PC/Windows platform RPI takes advantage of Microsoft’s 
Component Object Model and ActiveX automation technologies to allow 
you to write custom programs using Visual Basic, Visual C++, VBA or other 
COM compatible programming language.  

Under Unix, RPI provides a procedural (or ASCII) based programming 
model.  How you use RPI is dependent upon the development platform you 
have chosen to do your coding on.  

NOTE:
It is important that you reference the appropriate documentation describing 
either the PC/Windows/COM RPI or Unix ASCII RPI (depending on what 
development environment you have chosen to use). 

Figure 1. Remote Programming Interface Architecture
6   



Setup and Configuration
RPI Architecture

Under Windows, the ActiveX Automation Server provides PC applications 
with a COM interface to the logic Analyzer and uses RPI socket commands 
to communicate with the logic analyzer itself (see Figure 1).  This allows 
you to write programs that communicate with the logic analyzer using a 
COM model definition thus taking advantage of the ease of programming 
offered by the Visual Studio Environment (i.e. Visual Basic or Visual C++).

From Unix environments, RPI uses simple, ASCII text commands to 
communicate to the logic analyzer.  This makes it easy to write shell scripts 
or HLL programs without the need to install any other third party software 
on your workstation.

RPI for Unix

The Procedural RPI is a simple mechanism that allows a user on a remote 
host to open a TCP socket connection to an Agilent 16700 Series logic 
analyzer instrument.  Through this connection, simple ASCII string 
commands are sent, ASCII responses from the instrument are received, and 
binary or ASCII trace data is transferred to the host running the RPI 
program. 

Use Model

In order to create an easy to use, yet powerful remote control mechanism, 
the design of the RPI adheres to the basic use model of "load-run-store".

This means that when you want to create a remote control application or a 
program that runs repetitive tests, you simply go through each test once 
saving the logic analyzer configuration for each test you wish to repeat later.  
Then, from your program, you recall the appropriate logic analyzer 
configuration, run it, and store or act on the results as appropriate.

Create a Configuration File. Set up an instrument configuration for the 
desired measurement while sitting in front of the logic analyzer.  Save this 
configuration to a file.  This process allows you to use all the power of the 
instrument to setup your desired measurement.
 7



Setup and Configuration

 the 

lysis 
s on 
I is 
Load-Run-Store. Once a configuration file is saved, write an RPI program 
that remotely loads this pre-saved file. Modify a few critical measurement 
parameters, run the analyzer until the measurement is complete, then store 
the results, or the raw trace data for post-processing on the host.

System Setup

The RPI language is easily used on any host platform.  However, before you 
can run your RPI program, the logic analyzer must be set up on the LAN.  
This is done by getting the appropriate network information from your 
system administrator, and entering this information into the logic analyzer.

1. Click the System Administration icon on the system screen, then select the 
Networking tab.

2. Click Network Setup and enter the appropriate informantion.

3. Now select the Security tab and make sure the Remote Programming 
Interface is enabled.

NOTE:
To increase security when the RPI is not being used, disable the RPI 
interface from this screen.

Learning and Debugging RPI Programs

Once setup on the LAN, you are ready to connect and start writing and 
debugging RPI programs.  A simple way to learn how to program using RPI 
is to experiment with the RPI command language by opening a telnet 
connection from your remote computer to the logic analysis system 
specifying the special port address of "6500".

For example, type: “telnet my_logic_analyzer 6500” where 
"my_logic_analyzer" is its IP address or machine alias name, then press
Enter key.

This process opens a direct socket connection to the RPI in the logic ana
system.  You know you have a connection when the "->" prompt appear
a blank command line. This command line prompt indicates that the RP
ready to accept a command.
8   



Setup and Configuration
Exercise: At the prompt type: "modules"

The RPI polls the instrument cardcage and reports a list of all HW modules 
currently in the frame.

At the prompt type: "lock".

The RPI puts a full screen message box on the instrument console to warn 
people that the instrument is currently in use via the RPI.

This telnet mechanism is also useful in helping to debug RPI programs 
under development.  You can have a debug telnet connection open at the 
same time an RPI program is running.

For More Information. You can print the complete list of RPI commands 
by going into the Connectivity topic of the online help system and printing 
out the entire volume.

Data Transfers

To provide both a fast and easy to use process for data transfer, an 
uncompressed binary format is used.  One of the benefits of this format is 
that it’s easy to decode and the software required to decode the binary is very 
simple.

It should be noted that since all data values are transferred in byte-aligned 
columns, there will be some generation of white space, especially when 
transferring large numbers of single-bit values.

Although data transfers from logic analyzers and scopes are in binary form, 
data transfers from the Listing tool will come in ASCII form. For the Listing 
tool, the ASCII form allows GUI control over the numeric formats used, as 
well as the use of powerful SW Analysis tools such as the Serial Analysis 
tool or the Filter tool.

Sample Programs

Source code for some sample RPI programs and an RPI utility library is 
shipped with your Agilent Logic Analyzer.  They can be found in the 
directory
"/logic/demo/rpi/".  
 9



Setup and Configuration
You can transfer all files in this directory, including the makefile, onto your 
remote host using the various connectivity methods available from the logic 
analysis system.  These include ftp, NFS, PC file sharing, or simply using 
the built in floppy drive.  

After the files are transferred, you can compile and run the programs to get 
familiar with the basic capabilities of the RPI.

Remote Programming Interface RPI General 
Characteristics

The Remote Programming Interface (RPI) is available in two forms. While 
only information for the procedural (ASCII) user application is documented 
in this book, the following general characteristics apply. For additional 
information on the Agilent Benchlink XL ActiveX Automation Server, refer 
to the help system included with the Excel Add-in Toolbar.

Agilent Benchlink XL ActiveX Automation Server. The Agilent 
Benchlink XL ActiveX Automation Server is based on the Microsoft 
Component Object Model (COM).  The Agilent Benchlink XL package 
needs to be installed on the PC host.  This package can be downloaded from 
the instrument’s web page.

The Agilent 16600A or 16700A series logic analysis system must be fully 
powered up before attempting to connect to the analyzer.  A single user is 
allowed to connect to the logic analysis system server.   If another user tries 
to connect when a user is already connected or before the logic analysis 
system is fully powered up, he or she will receive an error indicating the 
connection is refused.

The logic analysis system will continue to run after a remote programming 
session disconnects.

Procedural (ASCII) User Application. The Agilent 16600A or 16700A 
series logic analysis system must be fully powered up before attempting to 
connect to the analyzer.

The logic analysis system will continue to run after a remote programming 
session disconnects.
10   



Setup and Configuration

wo 
 

s,
The procedural user application operates within the main thread of the logic 
analysis system application.

Programming Conventions

Each command is followed by its command options, all separated by a 
space. If any command option has argument types, they follow their option, 
all separated by a space. In the following example, the scope command has 
three options, “-n name”, “-c”, and “-meas”. The -meas option includes t
argument types in “period” and “risetime”. The program code would look
like the following:

scope -n Oscilliscope<B> -c 1 -meas period risetime

where:

scope = is the base command,
-n Oscilliscope<B> = is an option that names a scope module as the focu
-c 1= is an option to specify channel 1
-meas = is an option that initiates an automatic measurement query,
period risetime = two automatic measurement argument types to return.

Return results (for Oscilliscope<B>, channel 1):

period: 9.9E37
risetime: 0.000000420800

Other Considerations

Commands, options, and argument types can be full lowercase, full 
uppercase, or capitalized first letter. All query returns are in lowercase.
 11



Setup and Configuration
12   



2

System Commands

In the following chapter you will find a description of remote control 
commands that act on the system components such as file operations, 
module identification, frame configuration, network connectivity and system 
run function control.
13



System Commands

clear
clear

Description: This command clears the workspace of all modules and tools.

This command does NOT affect any system administration functions such as 
LAN settings, printer settings, etc...

Syntax: clear

Options: No options

Example:

clear Clears the workspace of all modules and tools.
14   



System Commands

config

ult. 
t.
config

Description: Use this command to load a previously saved instrument configuration file. 
This operation will restore the instrument to the same setup that was stored 
in the configuration file.   It also allows the currently configured instrument 
to save it’s current state to a new configuration file.

NOTE:
Configuration files can be located on the local hard drive of the instrument 
OR, through the use of NFS mounting and PC sharing, can be located on any 
mountable UNIX or sharable PC disk drive.

When saving a configuration, if the file exists, an error message will res
However, using the -f argument will force an overwrite even if file(s) exis

Syntax: config [-l | -s [-f]] config_file

Options:

Examples:

-l config_file Loads a configuration file named “config_file”.

-s [-f] config_file Saves the current configuration and data to a file named 
“config_file”.

config -l pentium._E

Loads a configuration file named “pentium._E”.

config -s myconfig

Saves the current workspace configuration with data to a file named 
“myconfig”.
 15



System Commands

ctl_port
ctl_port

Description: This command provides access to the instrument target control port. It will 
read and return the value present on the pins of the control port or set the 
port to a specific value. Values for the target control port can be set using the 
same syntax as analyzer -trig commands:

Syntax: ctl_port [? | value]

Options:

Returns: <8 bit value>

Examples:

#hfx Hex where upper 4 bits are high and lower 4 bits stay the 
same (don’t care).

#b11110000 Binary where upper 4 bits are high and lower 4 bits are low.

#q377 Octal where all 8 bits are high.

#bxxxx1xxx Set bit 4 high, leave all others the same.

? Reads the target control port and returns an 8-bit value.

value Sets the target control port to an 8-bit value.

ctl_port ?

Reads the 8-bit value from the target control port.
Returns:
#he

ctl_port #hfx

Sets the target control port output pins: upper 4bits go to High, lower 4 
bits stay what they were.
16   



System Commands

lock, unlock
lock, unlock

Description: This command coordinates access of the instrument with other users. When 
locked, a full screen message is displayed indicating that the instrument is 
currently in use by an RPI program. If desired, a custom message can be 
shown on the local display instead of a default message. As an example, a 
custom message might give information as to who has the unit locked. The 
instrument can then be unlocked when desired.

Syntax: lock ["message text"], unlock

Options:

Examples:

lock "message text" Locks all users out of the instrument. If a custom message is 
sent, it must be contained in quotes.

unlock Unlocks the instrument to allow other users.

lock 

Locks the instrument and displays a system default message.

unlock

Unlocks a currently locked instrument.

lock "Currently in use by Tom"

Locks the instrument and displays your custom message “Currently in use 
by Tom”.
 17



System Commands

modules

ent 

. The 
nd 

 

t 
modules

Description: Use this command to poll the system to identify the HW modules in the 
system, and return information on Type, Slot, and State.  There are two states 
that modules can be in, "active" or "available". Available means that the HW 
module is plugged into a slot in the frame and is available to be included in a 
measurement. The second state is "active".  In this state, the HW module is 
"activated" by being included in a measurement setup.  When included in a 
measurement setup, the HW module is both visible in the instrument 
workspace and from the "Navigate" pulldown menu in the instrument GUI. 
Active modules have either the default or user-defined ASCII names 
associated with them.

Syntax: modules [-a | -slot slot_id | -expanders]

Options:

Returns: For each module listed, the following information is returned:
Type, Slot, State, "Name", "Model", and "Description"

The “Type”, is a 2-character string representing a logic analyzer (LA), 
oscilloscope (SC), pattern generator (PG), and emulation (EM).
The “Slot”, is the letter or number identifier of the slot (A-J for measurem
modules, 1-4 for emulation modules). Most analyzers have 2 logical 
machines. The second machine is displayed as B2 for slot B, machine 2
“State”, is shown as either a “1” if the module is active, or “0” if inactive a
available.

with no option Returns a list of both Active and Available modules. Type, 
Slot, and State information for each listed module is returned.

-slot slot_id Returns information on a module in a specified “slot_id”. The 
slot identifier is A-J for measurement modules and 1-4 for 
emulation modules.

-a Returns a list of Active modules only. Type, Slot, and State
information for each listed module is returned.

-expanders Lists how many (and which) expander/slave cards each slo
has.
18   



System Commands

modules
Also returned is the following HW module information:
“Name”, “Model”, and “Description”

Example: LA B 1 "Analyzer<B>" "16550A" "100MHz State/500MHz Timing”
Where: LA=logic analyzer, B=slot B, 1=active state, Name=Analyzer<B>, 
Model=16550A, and Description=100MHz State/500MHz Timing

Examples:

modules

In this case, the Logic Analyzer in slot B is active, as well as the 
Scope in slot E.

Returns:
LA B 1 "Analyzer<B>" "16550A" "100MHz State/500MHz Timing"
LA B 0 "Analyzer<B2>" "16550A" "100MHz State/500MHz Timing"
LA D 0 "Analyzer<D>" "16556A" "1M Sample 100 MHz State/400 
MHz Timing"
LA D 0 "Analyzer<D2>" "16556A" "1M Sample 100 MHz State/400 
MHz Timing"
SC E 1 "Scope<E>" "16534A" "2GSa/s Oscilloscope"
EM 1 0 "Emulator<1>" "Emulation Module" "Not Configured"

modules -a

Query only the active modules. Note how only the two active 
modules from above are listed.

Returns:
LA B 1 "Analyzer<B>" "16550A" "100MHz State/500MHz Timing"
SC E 1 "Scope<E>" "16534A" "2GSa/s Oscilloscope"

modules -expanders

Slot D is a master card, with 1 expander card in slot C:

Slot A: 0 expanders
Slot B: 0 expanders
Slot D: 1 expanders
C
Slot E: 0 expanders
Slot 1: 0 expanders
 19



System Commands

start

” is 
s 

or 
se 

es.

.

start

Description: This command starts HW modules running. The definition of running is 
dependent on the HW module selected. For analyzer modules, “running
when their trace analyzers begin looking for a trigger, when oscilloscope
begin looking for a trigger, when pattern generators begin generating 
vectors, and emulation probes start the processor running.

All active modules may be started at once by using no option, individual 
modules started with -n name or -slot slot_id, and all modules in a "group 
run" list can be started with the -g option.

The -rep option applies to analyzers, oscilloscopes, and pattern generat
modules but does not apply to emulation probes. When used, it sets the
modules to repetitive run mode.

Syntax: start [-g | -n name | -slot slot_id] [-rep]

Options:

no option Starts all active modules running.

-n name Starts the active module named “name” running.

-slot slot_id Starts a specific module named “slot_id”. The slot identifier is 
A-J for measurement modules and 1-4 for emulation modul

-g Starts all modules configured in the group run list running.

-rep Starts LA, SC, and PG modules running in repetitive mode
20   



System Commands

start
Examples:

start

Starts all active modules running.

start -n Emulator<2>

Starts the processor in the emulation probe module named 
"Emulator<2>" running.

start -g -rep

Starts all modules in the group run list running repetitively.
 21



System Commands

status
status

Description: This command queries active modules and returns their measurement status. 
Status information returned depends on the module being queried. Analyzers 
and oscilliscopes can be stopped or running. Pattern generators can be 
stopped or running. Emulators can be running, reset, or in a break state. All 
active modules may be queried at once by using no option, individual 
modules with -n name or -slot slot_id, and all modules grouped in the "group 
run" list are queried with the -g option.

Remember an emulator is not a measurement module, so the state of the 
target processor on an emulator has no impact on the result of this command 
unless it is explicitly selected via the -n name.

Syntax: status [-g | -n name | -slot slot_id] [-v] [-text] [-clear]

Options:

Returns:

with no option Returns status of the frame. Returns either “running” or 
“stopped”.

-v Returns verbose status information instead of running/
stopped.

-slot slot_id Returns the status of a specific module named “slot_id”. The 
slot identifier is A-J for measurement modules and 1-4 for 
emulation modules.

-n name Returns the status of the active module named “name”.

-g Returns the status of all modules in the group run list.

-text Retrieve the text messages from the Run Status display.

-clear Clear the text messages in the Run Status display.
22   



System Commands

status
Examples:

status

Query if the frame is running anything.
Returns:
stopped

status -v

Query status for all active modules in the system.
Returns:
Analyzer<A>: stopped
Emulator<3>: MPC860 In Background

status -n PatternGen<J>

Query status for current module named "PatternGen<J>".
Returns:
running

status -g -v

Query status for all active modules in the group run list.
Returns:
Pentium: waiting for trigger
Analyzer<F>: waiting in sequence level 3
Emulator<3>: running

status -text

Show the text in the Run Status messages area.
Returns:
Analyzer<E>: Calibration Error

status -clear

Clear the messages area in the Run Status display
 23



System Commands

stop

 

ped 

tion 
stop

Description: This command stops HW modules that are actively running. The definition 
of running is dependent on the HW module selected. For analyzer modules, 
“running” is when their trace analyzers begin looking for a trigger, when
oscilliscopes begin looking for a trigger, when pattern generators begin 
generating vectors, and emulation probes start the processor running.

All running HW modules may be stopped at once by using no option, 
individual modules may be stopped with -n name or -slot slot_id, and a 
selected list of modules grouped together in the "group run" list are stop
with the -g option. 

The Stop command, using no option, will NOT stop the target processor 
connected to an emulation module. To do this you must select the emula
module with the -n name or -slot slot_id option.

Syntax: stop [-g | -n name | -slot slot_id]

Options:

Examples:

with no option Stops all actively running modules.

-slot slot_id Stops a specified module in the slot “slot_id”. The slot 
identifier is A-J for measurement modules and 1-4 for 
emulation modules.

-n name Stops the actively running HW module named “name”.

-g Stops all running modules in the group run list.

stop

Stops all actively running modules.

stop -n PatternGen<B>

Stops the actively running pattern generator named "PatternGen<B>".

stop -g

Stops all actively running modules in the group run list.
24   



System Commands

tools
tools

Description: This command queries the system and identifies the active SW tools. Tools 
that are "active" are currently included in a measurement setup and appear in 
the instrument workspace and from the "Navigate" pulldown menu in the 
instrument GUI. 

Syntax: tools

Options: No options.

Returns: Name: type ( lister, compare, fileout)

Examples:

tools

Returns:
Filter<1>: Filter
Listing<1>: Listing
Compare<1>: Compare
Listing<2>: Listing
Waveform<1>: Waveform
Waveform<2>: Waveform
 25



System Commands

version
version

Description: This command returns the version number for the product named by the 
option. If no option is used, the version number of the system software is 
returned.

Syntax: version [product]

Options:

Returns: Version number for system or named SW package.

Examples:

with no option Returns the SW version of the system.

product Returns the SW version of the named product.

version

Query version numbers of installed system SW packages.
Returns:
A.01.30.00

version MCORE

Query the SW version of the MCORE processor support package.
Returns:
A.01.31.00

version PROC-SUPPORT

Query the SW version of the PROC-SUPPORT bundle.
Returns:
A.01.30.00
26   



System Commands

wait

nds.
wait

Description: This command causes the remote programming interface to pause for a 
number of seconds, or until the current measurement completes. You can 
wait n seconds or until the measurement completes by using both a 
delay and the -complete option.

Without specifying a specific module, slot, or group to wait for, "wait 
-complete" will wait until the entire instrument is stopped. By 
specifying a specific slot, module, or tool name, or -g, you can wait 
until a single measurement completes.

WARNING:
With out a timeout value, if a measurement never completes, remote 
programs will hang.

Syntax: wait [n] [-complete] [-n name | -slot slot_id | -g]

Options:

Examples:

n Waits “n” seconds.

-complete Waits until measurement is complete.

-n name Waits until the named module stops.

-g Waits until the group run group completes.

-slot slot_id Waits until module in the indicated “slot_id” completes.

wait 10

Waits 10 seconds.

wait -complete

Waits until measurement is complete.

wait 30 -complete

Wait until the measurement is complete, but not longer than 30 seco
 27



System Commands

wait
wait 120 -slot D -complete

Wait until slot D completes, but not longer than 2 minutes.

wait -n Analyzer<B> -complete

Wait until Analyzer<B> completes.

wait -g -complete

Wait until group run completes.
28   



3

Hardware Module Commands

In the following chapter you will find a description of remote control 
commands that act on the installed hardware modules.
29



Hardware Module Commands

analyzer

e, 
analyzer

Description: This command accesses the data captured by an active analyzer. The 
analyzer is accessed by its logical name or slot id. 

This command can also return information on the last data captured 
including data size and boundary ranges. You can then select which labels of 
data you are interested in and transfer all states or a partial range of data out 
the communication channel.

Syntax: analyzer [-n name] [-i]
analyzer [-n name] -d [-l labellist | all] [-r start..end | all] [-t start..end | all]

Options for Data Query

Options:

NOTE:
The -n name option is used to specify a specific analyzer module. If there is 
only one active module, the -n name option is not required. However, if there 
are multiple analyzer modules active, you must use the -n name at least once 
to specify a module focus, then again each time you want to change the focus 
to another analyzer module.

-n name Sets the focus to the analyzer named “name”.

-slot slot_id Selects a specific analyzer located in “slot_id”. The slot 
identifier is A-J for measurement modules and 1-4 for 
emulation modules.

-i Queries for information on the last data captured.

-d [-l label1,label2...| all] [-r start..end | all] [-t start...end | all]
Begin upload of binary data out of the analyzer.
Use the -l option to list individual labels, -r to specify a rang
and -t to specify a time period.
30   



Hardware Module Commands

analyzer
Returns: The -i information query structure returns the following:

NOTE:
Transferring Transitional Timing Data.  When capturing data in transitional 
timing mode, data is only stored when a transition occurs.  Therefore, when 
accessing data captured by an active analyzer configured with transitional 
timing enabled, it is recommended that you transfer all states.  Transferring 
a partial range of captured data may result in ambiguous data values until 
the first transition within that range is observed.

Run ID: 1234567890
States: -4095..4096
Times: -1.0e-06...1.0e-06
5 labels
"ADDR" 32 bits unsigned integer
"DATA" 16 bits unsigned integer
"STAT" 5 bits unsigned integer
"Time" 64 bits signed integer timescale picoseconds
"State Number" N bits signed integer

NOTE:
To select which data is sent, the -d option must be accompanied by a range 
or time selection, and by a label selection. 

A range selection looks like this:

-r start..end or -r all,

where start and end are integer state numbers. If the data has states from -
4095..4096, there are 8K states. The trigger position is at state number 0.

The range can also be selected by time values, such as:

-t start..end or -t all

where start and end are floating-point values in units of seconds. The trigger 
location is always at time 0.0. So, to select from -1 microsecond to +1 
microsecond:

-t -1.0e-06..1.0e-06

Finally, to select labels, the -l flag is used:

-l ADDR,DATA,STAT,Time or -l all
 31



Hardware Module Commands

analyzer
If a label contains white space, the label is enclosed in quotation marks:

-l "State Number","System Clock",ADDR

Once data is selected, a two-part binary data transfer occurs. First, a simple 
8-byte header is sent, indicating how many states will be transferred, and 
how many bytes for each state will be sent. Then for each state, a row of 
bytes is sent containing the data for each of the selected labels as follows:

4 bytes - Number of records
4 bytes - Number of bytes per record
nrecords *bytes per record - Data

Each record contains one state or time of the data requested. For each label 
selected (-l option), there are an integer number of bytes containing the 
value. Labels are sorted in order by which they were requested, and if "all" is 
selected, they arrive in order by which they are listed in the -i query. 

The number of bytes for each label is the lowest possible integer number of 
bytes given the bit width of the label. For example, a 17-bit label will require 
3 bytes (24 bits), a 16-bit value will require 2 bytes.

Examples:

analyzer -n Analyzer<B> -i

Returns:
Run ID: 1234567890
States: -4095..4096
Times: -1.0e-06..1.0e-06
5 labels
"ADDR" 32 bits unsigned integer
"DATA" 16 bits unsigned integer
"STAT" 5 bits unsigned integer
"Time" 64 bits signed integer timescale picoseconds
"State Number" N bits signed integer

analyzer -slot C -d -l all -r all
<begin binary data transfer>
...
<end transfer>

Uploads data for all labels at all states.
32   



Hardware Module Commands

analyzer
Options for the Trigger Subsystem

The following options control the analyzer trigger subsystem. It allows 
simple pattern matching with ANDed/ORed pairs, simple storage 
qualification, two level sequencing, simple durations and edge triggering.

The following options also allow you to recall up to 10 defined trigger 
setups from a recall buffer. This allows easy, fast switching of triggers 
between measurements.

Syntax: analyzer [-n name] -trig condition [store condition2] followedby condition3 
[store condition4]

Options:

analyzer -n Analyzer<C> -d -l all -t -0.001..0.001
<begin binary data transfer>
...
<end transfer>

Upload data for all labels, in the time range of -1 msec to +1 msec

analyzer -d -l addr,data -r -100..200
<begin binary data transfer>
...
<end transfer>

Upload specific data for labels "addr" and "data" in the range of -100 to 
200 states.

-trig anything Set to trigger on anything and store everything.

-trig recall n Load a prestored trigger setup from the recall buffer “n”.

-trig recall “Macro Name”

Recall stored trigger setup by its name.

-trig condition1 [store condition2]

Trace for a condition 1 with optional store.
 33



Hardware Module Commands

analyzer
Conditions: A "condition" is a combination of Pattern, Range, and Edge definitions. 
Patterns and ranges are defined as hex, octal, or binary numbers with 
optional don’t care digits. To specify the number base, a prefix is used:

#h: Hexadecimal
#q: Octal
#b: Binary
#e: Edge (see below)

The ’x’ character denotes a don’t care digit. So to define a simple pattern 
condition, we might use something like this:

ADDR=#hFFFFXXXX

The above is a pattern condition that will search for a state when the value of 
the ADDR label lies between 0xFFFF0000 and 0xFFFFFFFF.

To specify a range, two pattern specifiers are joined by a comma (,). For 
example, to specify the same condition above as a range:

ADDR=#hFFFF0000,#hFFFFFFFF

To search for an edge or a glitch, we use an "edge specifier", defined by "#e" 
followed by any combination of the following characters:

x don’t care
r rising edge
f falling edge
t toggling edge
e either edge (same as toggling)
* glitch
g glitch (same as *)

-trig condition1 [store condition2] [followedby condition3 [store condition4]]

Trace for condition 1 followed by a condition 2 (with optional 
store at each level).

-trig duration condition1 [< | >] time

Trace when you find a value occurring for the desired time.
34   



Hardware Module Commands

analyzer
Two conditions may be combined with an AND or an OR. 
For example:

ADDR=#hFFFF0000,#hFFFFFFFF and DATA=#exxxRxxxx

Would search for a rising edge in bit 5 of DATA while ADDR is within the 
range 0xFFFF0000 - 0xFFFFFFFF.

Condition examples:

Pattern and Range Examples:

NOTE:
Don’t care digits are not allowed in ranges

Edge Examples:

Examples:

#hFFXX0022

Hexadecimal number with 2 don’t care digits (8 don’t care bits)

#q7777xxxx

Octal number with 4 don’t care digits (12 don’t care bits)

#b10110110xxxx0000

Binary number with 4 don’t care bits

#hFF00,#hFFFF

Range from 0xff00 to 0xffff

#eXXXXRFEG

Edge specifier with 4 don’t care bits, then Rising, Falling, Either, and 
Glitch bits

analyzer -n Analyzer<B> -trig addr=#h12e4c and ctl=#h00

Trigger when addr=0x12e4c and ctl=0..

analyzer -trig addr=#h12xx or addr=#h13xx store addr=#h1200,#h13ff

Setup trigger for default analyzer to start on addresses with don’t cares and 
store everything in the range 12xx to 13xx of label named “addr” .
 35



Hardware Module Commands

analyzer

r 
analyzer -trig addr=#h210 followedby addr=#h344

Trigger on access to address 210 followed by access to address 344.

analyzer -trig recall=1

Loads trigger setup from the recall buffer 1.

analyzer -trig recall=”Enter Main”

Recalls a trigger setup named “Enter Main”.

analyzer -n MyTarget -trig duration status=#h22 > 30 ns

Trigger analyzer named "MyTarget" when label status has value 22 fo
more than 30 ns.

analyzer -trig duration rdwr!#h0 < 30 ns

Trigger when no rdwr is not 0 pattern is found for less than 30 ns.

analyzer -trig io=#exxxxxFxF and cycle=#h1

Trigger if bit 0 & 2 of label named “io” transition low while label cycle is 
at pattern binary 1.
36   



Hardware Module Commands

scope
scope

Description: This command accesses the data captured by an active oscilloscope module. 
The scope is selected by name or slot id, and can be queried for information 
about data captured in the last run using the -i option, or data can be 
uploaded using the -d option. In addition to the entire data, data can also be 
uploaded from only channels of interest for a specific range of data.

A "channel" can be either a single digit channel number, as in 1,2,3, or 4, or 
the channel label name, such as "Ground" or "rd/wr". Default label names 
given to the channels are "Channel D1" where the "D" is actually the slot 
number of the card and the "1" is the scope channel number between 1 and 
10 (if you have enough expansion cards).

Syntax: scope [-n name] [-slot slot_id] -i -d -l [channellist | all] -c [channellist | all]
-r [range | all] -t [timerange | all]

Options to Access Data Capture

Options: 

NOTE:
The -n name option is used to specify a specific scope module. If there is only 
one active module, the -n name option is not required. However, if there are 
multiple scope modules active, you must use the -n name at least once to 
specify a module focus, then again each time you want to change the focus to 
another scope module.

-n name Selects the active scope module by name.

-slot slot_id Selects a specific scope module by a slot_id. The slot 
identifier is A-J for measurement modules.

-i Query information on last data captured.

-c Query names of available channels.

-d [-l ch1,ch2,... | all] [-c 1,2,... | all][-r start..end | all] [-t start..end | all]

Begins upload of binary data out of scope.
 37



Hardware Module Commands

scope

and 

 
he 
Returns: -i information query structure returns the following:

Run ID: 374199271
States: -16383..16384
Times: -8.191740e-06.. 8.192260e-06
4 labels
"State Number" 32 bits signed integer
"Time" 64 bits signed integer timescale picoseconds
"Channel A1" 15 bits yincrement 2.5247e-04 (volts/bit) yorigin -1.6203e+00
“Channel A2" 15 bits yincrement 2.5247e-04 (volts/bit) yorigin -
1.6203e+00

Analog data such as scope data is given in its unsigned integer format, 
the -i information provides the scale factors needed to convert back to 
floating-point voltages. For "Channel E1" above, there are 15-bit integer
values. To convert them to voltage, apply the following (where value is t
15-bit integer):

voltage = yorigin + yincrement*value

-c channel information query structure returns the following:

1: "Channel A1" 15 bits yincrement 2.5247e-04 (volts/bit) yoffset -
1.6203e+00

2: "Channel A2" 15 bits yincrement 2.5247e-04 (volts/bit) yoffset -
1.6203e+00
38   



Hardware Module Commands

scope
Examples:

scope -n Scope<E> -i

Query last data captured for scope named “Scope<E>”
Returns:
Run ID: 1250539440
States: -16383..16384
Times: -8.191659e-06..8.192341e-06
4 labels
"State Number" 32 bits signed integer
"Time" 64 bits signed integer timescale picoseconds
"Channel A1" 15 bits yincrement 2.5247e-04 (volts/bit) yorigin -
1.6203e+00
"Channel A2" 15 bits yincrement 2.5247e-04 (volts/bit) yorigin -
1.6203e+00

scope -c

Query available scope channels.
Returns:
1: "Channel A1" 15 bits yincrement 2.5247e-04 (volts/bit) yoffset -
1.6203e+00
2: "Channel A2" 15 bits yincrement 2.5247e-04 (volts/bit) yoffset -
1.6203e+00

scope -n Scope<E> -d -c all -t all

Upload all scope data.
Returns:
<begin binary data transfer>
...
<end transfer>

scope -d 1"Ground" -r -100..200

Upload specific data for channels "1" and "ground" in the range of -100 
to 200 states.
Returns:
<begin binary data transfer>
...
<end transfer>
 39



Hardware Module Commands

scope
Options to Access Trigger and Measurement Subsystems

Syntax: scope [-n name] [-c 1,2,...] [-1 channel1,channel2,..] -meas [-type | all ]
[-range,... -tgmode]

Options: These options to the scope command allow setting and querying of various 
measurement parameters and access to the automatic measurement results.

A "channel" can be either a single digit channel number, as in 1,2,3, or 4, or 
the channel label name, such as "Ground" or "rd/wr". Default label names 
given to the channels are "Channel D1" where the "D" is actually the slot 
number of the card and the "1" is the scope channel number between 1 and 
10 (if you have enough expansion cards).

-n name Selects the active scope named “name” .

-c channel number Selects the channel named channel number

-autoscale Autoscale the scope.

-c

-meas [type | all ]

Query automatic measurement results. See “Automatic 
Measurement Types and Returned Value”  below.

-range [range | ?]

Set or query channel range (vertical).

-offset [offset | ?]

Set or query channel offset.

-trange [range | ?] Set or query display range (horizontal).

-delay [delay | ?] Set or query display delay.

-sweep [triggered | auto |?] Set or query triggered or auto sweep.

-tglevel [N | ?] Set or query the channel trigger level.

-tgsource [channel | ext | ?]

Set or query the trigger source.

-tgslope [rising | falling | ?]

Set or query the trigger slope.
40   



Hardware Module Commands

scope
Automatic Measurement Types and Returned Values

To select which scope channel the measurement results come from, use the
” -c channel” option as follows:

scope -c 1 -meas all
or
scope -1 “Channel E2” -meas period

-tgmode [edge | pattern | immediate | ?]

Set or query the trigger mode.

all return structure with all measurement results.

falltime .90% to 10% time of left-most falling edge.
Falltime: 0.000000268200

risetime 10% to 90% time of leftmost rising edge.
Risetime: 0.000000420800

frequency Frequency: 9.9E37

preshoot Preshoot: 0.000000000000

overshoot Overshoot: 0.000000000000

period Period: 9.9E37

pwidth +Width: 9.9E37 

nwidth -Width: 0.000003408333

vamp Vamp: 0.113105058670

vavg Vavg: -0.058784030290

vbase Vbase: -0.117573976517

vmax Vmax: -0.004468917847

vmin Vmin: -0.117573976517

vpp Vpp: 0.113105058670

vtop Vtop: -0.004468917847

vdcrms Vdcrms: 0.060179378230

vacrms Vacrms: 0.012887802882
 41



Hardware Module Commands

scope
To query the current setting of any of the trigger options, use a “?” instead of 
a value. For example, to query the display time range: 

scope -trange ?

To set the display range to 0.001 seconds (1 msec):

scope -trange 0.001 

Examples:

scope -n Oscilliscope<B> -meas risetime

Query rise time of scope named “Oscilliscope<B>” -c 1.
Returns:
Risetime:0.004

scope -tgsource 3

Set trigger source to channel 3.

scope -delay ?

Query current timebase delay.
Returns:
0.00346
42   



Hardware Module Commands

pattgen

 

pattgen

Description: This command provides access to the pattern generator module. It allows the 
user to load an ASCII stimulus file into the pattern generator module. The 
user can also query a vector number for its value, or modify single vectors 
within a currently loaded stimulus file.

Syntax: pattgen [-n name] -f vectorfile
pattgen [-n name] -v vector_num label1=value1,label2=value2,...

Options:

NOTE:
The -n name option is used to specify a specific pattern generator module. If 
there is only one active module, the -n name option is not required. However, 
if there are multiple pattern generator modules active, you must use the-n 
name at least once to specify a module focus, then again each time you want 
to change the focus to another pattern generator module.

Returns: -v vector_num query information structure returns the following:

label1=value
label2=value
etc...

-n name Selects a pattern generator module. See the note below.

-slot slot_id Selects a specific pattern generator module by a slot_id. 
The slot identifier is A-J for measurement modules.

-f vectorfile Loads an ASCII stimulus file named “vectorfile” into the
target module.

-v vector_num [label1=value1,label2=value2,...]

Queries single vectors, or modifies single vectors with 
new values for each specified label.
 43



Hardware Module Commands

pattgen
Examples:

pattgen -f mem_ctl

Loads vectors from the file named “mem_ctl”.

pattgen -n Pattgen<B> -v 3

First sets the focus to the pattern generator module named 
“Pattgen<B>”, then queries for the value of vector number 3.
Returns:
data=3
ctl=3
chip_sel=0

pattgen -v 3 chip_sel=1

Modify the value in vector 3 under label "chip_sel" to a value of 1.
44   



Hardware Module Commands

emulator

 -run 
y.

ets 
emulator

Description: This command provides access to emulation probe HW modules. Processor 
control includes resetting the processor, breaking into the monitor, step, or 
starting the processor running (using the system "start” command or the
flag). It can also download binary processor code into the target memor

Syntax: emulator [-n name] [-slot slot_id] [-reset | -break | -run | -step]

Options:

NOTE:
The -n name option is used to specify a specific emulation module. If there is 
only one active module, the -n name option is not required. However, if there 
are multiple emulation modules, you must use -n name at least once to 
specify an emulation module focus, then again each time you want to change 
the focus to another emulation module.

Examples:

-n name Selects the emulator named “name”. See the note below.

-slot slot_id Selects the emulator in “slot_id”.The slot identifier is 1-4 
for emulation modules.

-reset Resets the processor on the target system.

-break Breaks the target system’s processor into the monitor.

-run Runs the processor.

-step Steps the processor.

emulator -n Emulator<1> -r

First sets the focus to the emulation module “Emulator<1>, then res
the processor on the target system.

emulator -break

Breaks the processor on the target system into the monitor.
 45



Hardware Module Commands

emulator
emulator -run

Runs the processor on the target system.

emulator -step

Steps the processor on the target system.
46   



4

Software Tool Commands

In the following chapter you will find a description of remote control 
commands that act on the installed software tools.
47



Software Tool Commands

listing
listing

Description: This command accesses the data displayed by an active lister. The lister is 
accessed by it’s logical name. 

This command can return information on the last data captured including 
data size, labels, and boundary ranges. You can then select which labels of 
data you are interested in and transfer all states or a partial range of data out 
the communication channel.

Syntax: listing [-n name] [-i] -d -l [labellist | all] -r [range | all]

Options:

NOTE:
The -n name option is used to specify a specific lister display. If there is only 
one lister display, the -n name option is not required. However, if there are 
multiple lister displays, you must use -n name at least once to specify a lister 
display focus, then again each time you want to change the focus to another 
lister display.

Returns: The -i query returns the following:

Run ID: 1799474489
States: -2032..2063
Times: -8.128000e-06..8.256000e-06
"State Number" 12 characters format Decimal
"Lab1" 4 characters format Hex
"Time" 11 characters format Absolute

NOTE:
A maximum of 30,000 states can be transferred by this command.

-n name Specifies a specific lister tool display by name.

-i Query for information on the last data captured.

-d -l [label1,label2,... | 
all]

Begins upload of ASCII LBP data out of the lister 
for a list of specific labels, or all labels.

-r [start..end | all] Specifies a range between start-state and end-state, 
or all states.
48   



Software Tool Commands

listing
Examples:

listing -n Lister<2> -i

Sets focus to Lister<2>, then queries for information on its last data 
captured.
Returned:
Run ID: 1799474489
States: -2032..2063
Times: -8.128000e-06..8.256000e-06
"State Number" 12 characters format Decimal
"Lab1" 8 characters format Hex
"Time" 11 characters format Absolute

listing -n MEMBD -d -l all -r all

Sets focus to Lister named MEMBD, then uploads data on all labels in 
all states.
Returns:
<begin ASCII transfer>
...
<end transfer>

listing -d -l addr,data -r -100..200

Uploads specific data for labels "addr" and "data" in the range of -100 
to 200 states.
Returns:
<begin ASCII transfer>
...
<end transfer>
 49



Software Tool Commands

compare
compare

Description: This command accesses the SW compare tool. A compare tool that is active 
on the workspace automatically executes a compare against the reference 
buffer whenever an analyzer captures a new trace.

The -i option returns the number of differences found. If the number -1(-one) 
is returned, it means the compare has not been executed. The -l option 
returns a list of label pairs and their masks.

There are two ways to do a compare. One is to compare a dataset with a 
reference buffer, and another is to compare one dataset to another from 
another tool (perhaps FileIn from a simulation).

The more typical compare is against a reference. In this case, label pairs 
usually look like the following:

addr,addr_ref

Because it is possible to compare any two labels (ie, "ADDR,DATA"), it is 
possible to set a compare mask by selecting both pairs. For example, we 
have the following two label pairs:

ADDR,ADDR
and
ADDR,DATA

In order to set the mask on ADDR,DATA, we enter the following command 
and option:

compare -m ADDR,DATA=#hffff0000

If all label pairs are unique, masks can be set by their first label in the pair:

compare -m ADDR=#hffff0000

The comparison masks are values that are "ANDed" to the captured trace 
label before it is diffed with the reference buffer. Therefor, a "1" in a bit 
position means this bit is significant to compare and a "0" means this bit is a 
don’t care.
50   



Software Tool Commands

compare

for 
Syntax: compare [-n name] -i -l -m [label1=mask1,label2=mask2,...]

Options:

NOTE:
The -n name option is used to specify a specific compare tool. If there is only 
one compare tool, the -n name option is not required. However, if there are 
multiple compare tools, you must use -n name at least once to specify a 
compare tool focus, then again each time you want to change the focus to 
another compare tool.

Returns: The -i query returns the following:

67

The -l query structure returns the following:

label1,label1_ref (mask=0xff00)
label2,label2_ref

Examples:

-n name Sets focus to the active compare tool named “name”.

-i Query information on last comparison.

-x Executes the compare.

-l Lists current label pairs.

-m [lab1=mask | 
lab1,labl2=mask]

Query or set up label comparison masks.

compare -n DMA_Comp<1> -i

Sets focus to compare tool named “DMA_Comp<1>”, then queries 
status differences found.
Returns:
1

compare -m ctl=#hff00,-m data=#h00ff

Set up mask #hff00 on label ctl, and mask #h00ff on label data.

compare -m Lab1,Lab2=#hff00

Sets mask for a label pair using both primary and secondary labels.
 51



Software Tool Commands

compare
compare -l

Lists the current label pairs and their masks. (If there are no masks, 
nothing is listed).
Returns:
Current label pairs:
Lab1, Lab1_ref (mask=0Xff00)
Lab1, Lab2_ref

compare -x 

Re-execute compare

compare -i

See if anything failed.
Returns:
0

compare -m data=#hff00 -x -i

Changes the mask for label data, executes a compare, and returns the 
number of differences.
Returns:
23
52   



Software Tool Commands

fileout
fileout

Description: This command controls the saving of data from a fileout tool into a specified 
file.

Syntax: fileout [-n name] [-f file] [-s]

Options:

NOTE:
The -n name option is used to specify a specific fileout tool. If there is only 
one fileout tool, the -n name option is not required. However, if there are 
multiple fileout tools, you must use -n name at least once to specify a fileout 
tool focus, then again each time you want to change the focus to another 
fileout tool.

Examples:

-n name Sets focus to a specific fileout tool named “name” .

-f file Defines a filename named “file” to save to.

-s Save data to file previously specified.

fileout -n Fileout<1> -f pentium.out

Sets focus to the fileout tool named “Fileout<1>”,  then defines the save 
filename to “pentium.out”.

fileout -s

Save data to whatever file was defined with -f option. In this example, it 
was “ pentium.out”.
 53



Software Tool Commands

fileout
54   



Index
A
analyzer, 30
analyzer, data query, 30
analyzer, trigger subsystem, 33
automatic measurement types, 41

C

clear, 14
compare, 50
config, 15
ctl_port, 16

D
data transfers, 9

E
emul, 45

F

fileout, 53

H
Hardware Module Commands, 29

I
In This Book, 2

L

listing, 48
lock, unlock, 17

M
modules, 18

O

overview, RPI diagram, 6

P
pattgen, 43
 

programming conventions, 11

R
RPI architecture, 7
RPI general characteristics, 10
RPI overview, 2

S
sample programs, 9
scope, 37
scope, data capture, 37
scope, trigger and measurement, 40
Setup and Configuration, 5
setup, system, 8
Software Tool Commands, 47
start, 20
status, 22
stop, 24
System Commands, 13
system setup, 8

T
tools, 25

U

unlock, 17
use model, 7

V
version, 26

W

wait, 27
55


	Programmer’s Guide
	Setup and Configuration
	Remote Programming Interface RPI Overview
	RPI Architecture
	RPI for Unix
	Use Model
	System Setup
	Learning and Debugging RPI Programs
	Data Transfers
	Sample Programs
	Remote Programming Interface RPI General Characteristics
	Programming Conventions

	System Commands
	clear
	config
	ctl_port
	lock, unlock
	modules
	start
	status
	stop
	tools
	version
	wait

	Hardware Module Commands
	analyzer
	scope
	pattgen
	emulator

	Software Tool Commands
	listing
	compare
	fileout



